INSTRUCTION MANUAL

FOR

CP24 SINGLE SIDEBAND PORTABLE TRANSCEIVER CMC 189-924

$1.6 \mathrm{MHz}-15.0 \mathrm{MHz}$
1 TO 4 CHANNELS

all rights reserved including, the. RIGHT TO REPRODUCE THIS MANUAL OR PORTIONS THEREOF IN ANY FORM.

Montreal 301,
Province of Quebec

IN U.S.A.
KAAR ELECTRONICS CORPORATION

ALIGNMENT AND SERVICING
General
4-1
Test Equipment Required

RECEIVER
3-1
Microphone 2-2
Antennas 2-2
C. W. Operation 2-5MOBILE INSTALLATIONGeneral

1-1
Technical Specífications 1-1
Electrical Specifications 1-2
Crystal Information 1-5
Batteries 1-5
Diagram of Connections / 14 Battery Charger 1-6
Parts List,/l4 Battery Charger 1-6
Carrying Bag 1-7
Humidity Protection 1-7
OPERATION
2-1
Controls

3-1
Installation 1

3-3

3-5

Parts List - Mobile Mounting Kit
Parts List - Mobile Mounting Kit4-1
4-2RECEIVER

General

4-1

Alignment

4-1

Specification Tests 4-2
General 4-2
4. 3

TRANSMIT TER
General 4-3
Alignment 4-3
Specification Tests 4-4
Lower Sideband Operation 4-5
H. F. O. Connections 4-5
H. F. O. Netting 4-6
Alternate TX Alignment 4-6
Temperature Compensation
Capacitors 4-7
Channel Kits 4-7
Table of Connection for Channel Kits 4-8
Parts Lists 4-10
Diagram of Connections 4-23AVAILABLE OPTIONS5-1
ILLUSTRATIONS

Figure	Title	Page
1	Battery Placement	$1-4$
2	CP24 Controls	$1-8$
3	Antenna Connections	$2-3$
4	Typical Antenna Installations	$2-6$
5	Adjustable Load Coil Calibration Chart	$2-7$
$5 A$	Adjustable Load Coil Calibration Chart	$2-8$
6	Mobile Installation Diagram	$3-2$
7	Antenna Connectors ard Field	
	Strength Meter	$3-4$
8	CP24 Block Diagram	$3-6$
9	H. F. O. Connections	$4-7$
10	Two Tone Oscilloscope Traces	$4-9$
11	Top View of Printed Circuit Board	$4-21$
12	Bottom View of Printed Circuit Board	$4-22$

5

INTRODUCTION

A. GENERAL

The CP24 is a portable, fully solid state SSB transmitter/ receiver, designed for reliable and efficient operation under extreme conditions of weather and temperature. Contained in a high impact plastic case with a cast aluminum front panel, the unit is sealed and weatherproof.

Internal batteries are easily accessible and will supply power for up to fifty hours operation. Nine size D cells are used, and may be regular zinc-carbon, alkaline, or rechargeable nickel cadmium batteries. It is also possible to operate the unit from a vehicle's 12 V. DC supply.

An internal tone oscillator provides the signal necessary to tune the antenna for maximum transmitter output. A knurled knob on the antenna coil tunes the built-in loading coil. Transmitter output is indicated on the front panel meter. The oscillator can also be used to alert the distant station with a tone signal.

A combined R.F. gain and audio squelch control greatly reduces normal atmospheric noise between incoming signals. With the output squelched when standing by, receiver battery drain is reduced.
B. TECHNICAL SPECIFICATIONS - GENERAL

Frequency Range	1.6 MHz to 15 MHz
Temperature Range	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Frequency Stability	$\pm 100 \mathrm{~Hz}$ from $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Battery Drain	Receiver (squelched) $25 \mathrm{~mA} @ 11_{i}-5 \mathrm{~V}$. \quadTransmit: 0.75 A averamum

C. ELECTRICAL SPECIFICATIONS

1. Transmitter

Power Output $\quad 10$ watts P. E. P. at 11.5 V . input.
Output Load Impedance
50 ohms nominal, unbalanced
Automatic Load Control 10 db excess input produces less than 1 db increase at 10 W . P. E. P.
A. F. Response -3 db at 600 and 2200 Hz approx.

Spurious and Harmonic Emissions

Carrier Suppression
Unwanted Sideband Suppression

Intermodulation Distortion
43 db below P. E. P. at 50 ohms

50 db below P. E. P.
better than 50 db below P. E. P.
Output Protection -.

26 db below P. E. P.
No damage to unit if antenna is mismatched or disconnected.

2. Receiver

> Type

Sensitivity
Selectivity

Superheterodyne, Crystal Filter
0.5 uV at $12 \mathrm{db} \mathrm{S} / \mathrm{N}$ Ratio
2. 1 KHz at $\quad 6 \mathrm{db}$ down 6. 0 KHz at $\quad 60 \mathrm{db}$ down

Image Rejection and Spurious Responses
Automatic Gain Control
Clarifier Range
A. F. Bandwidth
A. F. Output

1. 6 MHz to 10 MHz : $\quad 50 \mathrm{db}$ down 10 MHz to 15 MHz : $\quad 43 \mathrm{db}$ down

Input Variation from 1 uV to 1 volt produces less than 12 db output change.
+0. 002\% of Channel Frequency -3 db , at 600 Hz and 2200 Hz approx.

250 mW at 5% distortion and 1000 Hz 2-1/2 inch weatherproof speaker.

Battery Life (at $20^{\circ} \mathrm{C}$ or $68^{\circ} \mathrm{F}$)

Effective Temperature limits for different type batteries

Channels

Modes

Antenna Options

Antenna Matching

Dimensions

(1 minute transmit: 10 minutes receive-repeated)
Zinc Carbon cells 15 hours (Industrial type preferred)
Alkaline cells $\quad 50$ hours
Rechargeable Nickel Cadmium
Cells $\quad 50$ hours

Zinc Carbon: 0° to $60^{\circ} \mathrm{C}$
$\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Alkaline cells: $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ $\left(+14^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Nickle $-30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Cadmium $\quad\left(-22^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
(a) 1 or 2 with no restrictions, or
(b) 2 with common TX and RX frequencies, plus
(c) 2 others, less than 1% from (b) frequencies, or
(d) (b) + upper / lower sideband swi tching.

USB - normally supplied
LSB - if specified or both USB/LSB.
CW - 1000 Hz from suppressed carrier add kit / 12

Center fed dipole (cut to frequency)
Mobile 8' whip (supplied to frequency) Tunable portable whip (2 options) Tunable long wire kit.

Not required for mobile and dipole antennas. Tuner and loading coils provide full coverage for long wire. and portable whips.

Height
Width
Depth
Weight

4 inches (10.1 cm) 9 inches (23 cm)
12 inches (30.5 cm)
$10 \mathrm{lbs} .(4.5 \mathrm{~kg})$
with Zinc- carbon batteri

FIGURE I
REAR AND TOP VIEWS TO SHOW BATTERY PLACEMENT

D. CRYSTAL INFORMATION

Beat Frequency. Oscillator Crystal CMC 730-055
Frequency 456.500 KHz
High Frequency Oscillator
(channel determining crystal)

- USB use crystal CMC 730-054 USB

FX (crystal frequency) $=\mathrm{Fc}($ carrier freq. *) $+456.500 \mathrm{KHz}$
LSB use crystal CMC 730-054 LSB
$F X=F c-456.500 \mathrm{KHz}$
NOTE
The carrier frequency is the frequency of the SSB suppressed carrier frequency. It is not the assigned channel frequency on SSB.

E. BATTERIES

Nine size D, regular flashlight type cells, supply power for the CP24. These are contained in the case in three groups of three, and are accessible from the rear of the unit. All cells are connected in series to provide a nominal value of 12 volts. A detachable rear door keeps the batteries in place and provides a waterproof cover for them. To reach the batteries, push down the three spring loaded knurled knobs in the rear door. Spring pressure on the batteries will push the cover open. Polarity is indicated on the rear of the cover.

Rechargeable nickel cadmium batteries are recommended. These will withstand many charging cycles and will give long periods of service between charges.

These batteries may be charged from the $115 / 230 \mathrm{~V}$ AC line with the CMC 244-722414-001 charger. This charger connects into the antenna socket of the unit when the antenna is disconnected. A charger adaptor (/15) is available which will allow the antenna and battery charger to be connected at the same time. A charging rate of 400 mA for 14 to 20 hours will be sufficient to fully charge the batteries. A trickle charge of 50 mA will maintain the cells at full charge. A switch on the battery charger provides these two outputs as required.

A Battery Holder (/16) is also available, which may be used with the / 14 charger, when charging batteries removed from the CP24.

Battery Charger Parts List

ITEM

R501
R502

* R503
* R504

CR501, CR502
CR503, CR504
S501
S502.
I501
T501
P502

RESISTOR, 47 K ohms, $10 \%, 1 / 4 \mathrm{~W}$
Same as R501
RESISTOR, 3.3 Ohms, 7W, 10\%
RESISTOR, 68 ohms, 10%, 2W

Diode, 1 amp, 400 P.I. V. G100B
Switch, SPST, 6 Amp.
Switch, SPST, 1/2 Amp.
Neon lamp,
Power transformer
Connector, plug, 6 pin

TYPE
CMC 286-702473-001

CMC 288-990070-633
CMC 286-934680-001

CMC 296-990070-659
CMC 312-990070-700
CMC 312-990070-702
CMC 266-990070-569
CMC 322-730056-001
CMC 230-990070-510

* On some earlier units, $\mathrm{R} 503=10$ ohms, $\mathrm{R} 504=150$ ohms.

Non rechargeable zinc-carbon or alkaline type batteries may also be used. The alkaline type will give over three times the service life of the zinc carbon cells. When zinc-carbon cells are used, the industrial type is preferred over standard cells.

F. CARRYING BAG

A carrying bag (/21) is available, that will accomodate the complete unit with its accessories. Space is provided inside the bag to store the microphone, antennas (whip and long wire) and loading coils in separate pockets. The whip antenna may be the single long section or the collapsible section type which can be dismantled for storage. To store the single section antenna, a long plastic tube, formed into a coil is fastened to the rear of the bag. The antenna is inserted into the coil, and pushed in for its entire length. The inside of the coil should be lubricated periodically with Tygaflor standard spray. This is available in a 16 oz . aerosal spray can from Johnston Industrial Plastics Limited.

The bag is made from PVC plastic covered nylon mesh, and is water and fungus proof, flame resistant and flexible in extreme cold.

An adjustable carrying strap on the bag allows it to be carried over the shoulder or on the back, like a knapsack. The strap may also be detached and used to carry the CP24 by itself. This strap is an option (/22) and must be ordered separately.

G. HUMIDITY PROTECTION

Mounted inside the case of the CP24 is a small white bag containing silica-gel, which should be checked regularly. This is added as a precaution against excessive humidity in the unit. The crystals in the bag have a blue tint, which can be seen through the bag. If the crystals have turned slightly pink, it indicates that they have absorbed their limit of moisture, and must be dried out. Remove the bag and place it in a $250^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$ oven for 2 hours. When dry, the blue tint will return. After drying, replace the bag in the CP24.

FIGURE 2
CP24 CONTROLS

A. CONTROLS

All controls are on the front panel (See Figure 2)
These are:

1) Audio gain and ON-OFF switch (V), lower right hand knob.

Note: Antenna plug must be in Antenna socket before unit will operate(removing antenna plug disconnect internal batteries)
2) Squelch control (S), upper left hand knob.
3) Channel switch (F), lower left hand knob.
4) Clarifier control (C), upper right hand knob.
5) Transmit button, left hand button above speaker.
6) Tone, right hand button above speaker.

1. Audio gain (V). The ON- OFFF switch is mounted on this control. Turning the knob clockwise turns the switch on. Maximum receiver output is fully clockwise. Adjust for desired volume. An orange colored band under this knob is visible through the small cut-out in the knob skirt. This is to indicate at a glance that the switch is ON. No color is visible when the switch is OFF.
2. Squelch control (S) is used to reduce the amount of noise heard in the receiver when no signals are being received. Turn the volume control (V) to maximum output, and adjust the S control CCW until the receiver is just squelched. In strong signal areas, it may be necessary to turn this control further counter clockwise to reduce the sensitivity of the receiver. There is a slight time delay in the squelch action of this control to prevent unnecessary clipping of speech at certain levels.
\therefore 3. Channel switch (F). Four position switch. Be sure that proper channel frequency is selected.
3. Clarifier control (C), is used to fine tune the high frequency oscillator for clearest reception.
4. Transmit button is used when there is no microphone or hand set connected. In this condition, the loud speaker is used as a microphone by speaking directly into it while the transmit
5. Tone button, when held in on transmit, produces a 1000 Hz tone, which can be used to tune the antenna. This tone can also be used to call distant stations.

The panel meter reads battery voltage on receive. When it reads less than one quarter scale, the batteries should be replaced or recharged. On transmit it is used to tune the antenna. Meter deflection will vary when speaking into the microphone.

B. MICROPHONE

Connect the microphone or handset to the MIC socket at the lower right hand corner of the panel. The Push to Talk switch onthe handset or microphone operates the transmitter. To transmit without a microphone or handset, the TRANSMIT button on the front panel is used as the PTT switch: the speaker is used as a microphone, (only when the MIC socket is not used).

C. ANTENNAS

The basic CP24 antenna ${ }^{\circ}$ consists of the adjustable antenna kit (/2). Other forms of antennas are optional, and are ordered separately.

When the tuning coil is used with the 5^{\prime} whip, the antenna operates as a center loaded whip. Frequency coverage with the adjustable loading coil is between 2 MHz and 15 MHz . To extend this range below 2 MHz to 1.6 MHz , a fixed loading coil is inserted in series between the whip and the adjustable loading coil. See Figure 3.

To extend the antenna range without using the fixed loading coil, a long wire should be substituted for the collapsible, whip. The long wire antenna with its adaptor, is connected to the adjustable loading coil in place of the whip antenna. The long wire antenna is tuned the same way as the whip antenna. A good ground is essential, and may be in the form of a large conductive surface area such as the frame of a motor vehicle or a wire mesh fence.

Due to inherent ground and loading coil losses at the lower frequencies, the long wire antenna with a good ground will have a distinct advantage over the whip and should be used where possible.
0

Tuning the adjustable loading coil is done by turning the black knurled knob with the bright orange band. Just below this knob is a smaller one which is used to lock the tuning in position.

The 0-10 scale on the side of the transparent coil housing indicates - the approximate frequency to which the whip is tuned. Start tuning with the scale set to 10 and use the first peak as the coil is tuned. A calibration chart for this scale is shown in Figure 5.

Tune the coil first on receive, to maximum noise output from the speaker. Then operate the transmitter with the test tone (press Tone and *Transmit buttons together) and retune the antenna coil for maximum output as indicated on the front panel meter.

The transmitter should be tuned in as short a time as possible to avoid excessive battery drain. More power is required from the batteries with the TONE button ON, than when transmitting speech. After tuning, tighten the locking knob.

Antenna tuning is critical, and should be checked periodically. Tuning will change with movement of the unit, and will be effected by the proximity of trees, buildings, etc.

In cases where it is impossible to have a suitable ground, or if there is no ground connection at all, the reading on the panel meter may be too small to allow accurate antenna tuning, particularly at the lower frequencies. In this case, tune the antenna for maximum noise on receive.

Figure 4 shows how the dipole antenna should be mounted. The two halves are horizontal and at a height above ground equal to one half the total length. The ends of the antenna can be fastened to trees, flag-poles, buildings or other existing objects of suitable height. A connector on the end of the lead-in plugs directly into the antenna socket, Jl0l.

The dipole antenna does not require tuning.

D.

C. W. OPERATION

Remove the microphone, if used, from its socket and plug the telegraph key in its place. The key may be hand held or strapped to the operator's leg.

Press the transmit switch.

Operate the key to produce a C. W. output.

* On later units it is unnecessary to push the two together as the tone button also turns on the transmitter.

GROUND NOT NECESSARY FOR DIPOLE OPERATION USE FOR STATIC DISCHARGE ONLY

TYPICAL LONG WIRE ANTENNA INSTALLATION REFER TO CHART- FIGURE 5

FIGURE 4 - TYPICAL ANTENNA INSTALLATIONS

EXAMPLE 1.
To find dial calibration when using a 30 ft . long wire antenna at 3.0 MHz .
A) Draw a vertical line from the base of the graph at 3.0 MHz to the 30 ft . long wire antenna line.
B) Point where these two lines intercept will give the approximate dial reading at the left side of graph EXAMPLE 2.

To find dial calibration when using an 8 ft . whip antenna at 1.8 MHz .
A) Draw a vertical line from the base of the base of the graph at 1.8 MHz . This line will not intercept the 8 ft . WHIP line, but will intercept the 8 ft . WHIP WITH/3 LOAD COIL, line.
B) Point where these two lines intercept will give the approximate dial reading at the left side of the gr Below 2. 0 MHz , therefore, a $/ 3$ load coil must be used in conjunction with the whip.

At the frequency of 1.8 MHz , it is also possible to use the 30 or 60 foot long wire antennas as shown on the graph.

EXAMPLE 1.

To find dial calibration when using a 10 ft . Long wire antenna at 3.0 MHz .
A) Draw a vertical line from the base of the graph at 3.0 MHz to the 10 ft . long wire antenna line.
B) Point where these two lines intercept will give the approximate dial reading at the left side of grap

EXAMPLE 2.

To find dial calibration when using a 5 ft . whip antenna at 1.8 MHz .
A) Draw a vertical line from the base of the base of the graph at 1.8 MHz . This line will not interce the 5 ft . WHIP line, but will intercept the 5 ft . WHIP WITH/3 LOAD COIL, line.
B) Point where the se two lines intercept will give the approximate dial reading at the left side of the Below 2.0 MHz , therefore, a $/ 3$ load coil must be used in conjunction with the whip.

NOTE:
At the frequency of 1.8 MHz , it is also possible to use the $10 \mathrm{ft}, 20 \mathrm{ft}$, or 30 ft . Long wire antenn. as shown on the graph. The vertical line will intercept these lines at approximate dial points of 1.5, 3.5 and 4.5 respectively.

This chart is for earlier units with adjustable load coil calibrated 0-15

A. GENERAL

The CP24 may be either dash or floor mounted in a vehicle with the $/ 7$ Mobile Mounting Kit. Power for the unit may be taken from the vehicle's l2V supply.
B. INSTALLATION

Refer to Figure 6 and install the mounting bracket as shown. Floor or dash mount may be used as required.

Install the microphone hanger where convenient: preferably on or near the dashboard.

Connections to the 12 volt supply are provided by the cable as sembly CMC 730-064. The red battery lead must be connected to the positive supply. If the vehicle has a positive ground system, the red lead would then be connected to ground. If the vehicle has a negative ground system, then the black lead would be connected to ground.

The limiter assembly on the cable may be mounted on the side of the mounting bracket in the holes provided. However, if more convenient, it may be mounted elsewhere close by, as determined by the length of cable between the connector and the assembly.

Connect the high, or hot, side of the cable to the battery side of the ignition switch. If the nickel-cadmium batteries are used in the unit, they will be recharged from the 12 volt supply, even when the motor is not running. If the non rechargeable batteries are used, they may be left in place. The 12 volt supply connected across them will help to extend their life.

It is not advisable to leave the internal batteries in the CP24 for extended periods of time, as damage could result from overcharging. The CP24 operates directly from the vehicle's battery. If the mobile installation is permanent, the internal batteries are not required.

ANTENNA CONNECTORS

Connections to the antenna (or antennas) is provided by cable assembly 730-064. Two coaxial cables in this assembly allow the use of a separate antenna for each channel. When two antennas are used for this purpose, they should be mounted at least three feet apart on the vehicle.

To tune the antenna, a field strength meter is required. If none is available, a sensitive VOM with a diode connected in a wire loop may be used (See Figure 7). Tune the adjustable loading coil for maximum reading on the field strength meter. If a fixed antenna is used, the field strength meter should be used to check that it is properly connected.

If only a single channel and antenna is used, the unused cable may be left in place and rolled up under the floor mat or other convenient place. It is not necessary to disconnect it.

For two channel operation with one antenna, the cable assembly must be modified as shown in Figure 7 on the next page. In this case, it will be necessary to retune the antenna each time the channel is switched.

NOTE: The front panel meter on the main unit cannot be used for antenna tuning in a mobile installation. The meter reads R.F. current at the antenna connector, and is not a reliable indicator of antenna current if a feeder cable is used between the CP24 and the antenna.

CONNECTIONS WHE TWO ANTENNAS AR USED

SETUP FOR USING A V.O.M. ($20,000 \Omega$ PER VOLT OR BETTER) FOR ANTENNA TUNING

FIGURE 7
ANTENNA CONNECTORS AND FIELD STRENGTH METER

CP 24 MOBILE MOUNTING KIT

CMC 189-924-007

ITEM	TYPE NO.	DESCRIPTION	QTY
1.	CMC 769-735	Bracket Assembly	1
2.	CM C 730-065	Limiter Assembly	1
3.	CMC 306-788	Mounting Strap	2
4.	CMC 730-063	Pad	1
5.	731	Rubber Bushing	2
6.		Screw, 1/4-20 x 3/4'	4
7.		Screw, 1/4-20 x 2	4
8.		Screw, self tapping, \#14 x 1-1/2	4
9.		Screw, \#6-32 x 5/16	2
10.		Nut, 1/4-20, Hex, steel	6
11.	1114	Lockwasher 1/4"	6
12.		Washer, 1/4' plain, steel	6
	LIMITER A	ASSEMBLY CMC 730-065	
	CMC 730-064 $97-3108 B-14 S-6 S-639$	Cable Assembly Connector (Amphenol)	
	3 A 30	Diode, Solitron	
	IRC-PW 10	Resistor, 10 ohms, $\pm 10 \%, 10 \mathrm{~W}$	

IRC - PW 10
Resistor, 10 ohms, $\pm 10 \%, 10 \mathrm{~W}$

NOTE: A Field Strength Meter is recommended when installing mobile units. Used to tune and/or check antenna output.

SECTION 4

ALIGNMENT AND SERVICING

A. GENERAL

This section deals with routine service and alignment details, should the performance of the unit deteriorate in any way, or should the frequency require changing.
B. TEST EQUIPMENT REQUIRED

> Type used to obtain readings shown

1. DC Power Supply - 9-16 Volts 2A
2. Multimeter
3. VTVM, with probe
4. Frequency Counter
5. Oscilloscope
6. Audio Oscillators (2 required)
7. R.F. Generators (2 required)
8. R.F. Wattmeter
9. A. F. Distortion Analyzer
10. A.F. Wattmeter
1.1. H. F. Spectrum Analyzer

Avo Model 8
Ballantine 317
Hewlett-Packard 524B
Tektronic 547 with type
lAl plug-in
Hewlett Packard 200CD
Marconi Instruments TF144
Marconi Instruments TFll52
Heathkit HD-1
General Radio 583A
Panoramic SB-126
4.2 RECEIVER
A. GENERAL

Remove the unit from its case, and connect it to the power supply.
Disconnect the speaker and substitute the audio wattmeter, set for a 40 ohm load. Connect the oscilloscope and distortion meter across the wattmeter terminals. Connect the RF signal generator to the antenna input.
B. ALIGNMENT

Turn all equipment on
Set channel switch to the appropriate channel
Set squelch (S) control to maximum
Set volume (V) control approximately half way.

Set the RF signal Generator to CW and adjust its attenuator for maximum output, and its frequency for an audio output from the receiver of around 1000 Hz . Check that the frequency of the generator is approx. that of the channel frequency before tuning, to avoid trying to set up the receiver on a spurious response or on the wrong side of the HFO.

Tune coils Tl0l and Tl02 for maximum output on the VTVM section. of the distortion meter, reducing the input voltage progressively as sensitivity increases, until maximum sensitivity is obtained.

NOTE: When tuning double-tuned coils always start with the slugs at the ends of the coils and tune them slowly towards the center. Tune on the first peak.

Receiver coils are double-tuned above 4.3 MHz for T 10 l and above 6 MHz for T102.

C. SPECIFICATION TESTS

1. Set R 129, (I. F. Gain Control) to minimum (CCW) *

Set R177, (AGC Control) and Rl44 (squelch bias control) to maximum (CW).
Turn Rl58 CCW until an increase of 0.5 mA is noted in the total current drain.
2. With a 40 ohm load in place of the speaker, apply an EMF of 1 mV to the antenna, and adjust its frequency to give an output of approximately 1000 Hz at audio output (pin 24 on printed circuit board Set the volume control ($R 147$) to minimum (CCW) and adjust R177 for a reading of 320 mV at the junction of L103 and R143 with VTVM. Set volume control (R147) for 250 mW output. Audio distortion should be 5% or less.
3. Reduce input to 0.5 uV EMF, and set R 129 (I. F. gain) to give an output of $25 \mathrm{~mW} \pm 5 \mathrm{db}$.
4. Set the squelch control (R173-R101) fully CW. Disconnect the R.F. signal and connect the audio generator to the junction of L103 and R14: through a 10 uF capacitor. Set generator output to 100 mV at 1000 Hz . Adjust Volume Control (R147) for an output of 200 mW , (or 2.8V), reset R173-R101 to mid-position, and turn R144 (squelch bias control) CCW until the output drops to 10 mV . (. 002 mW across 40 ohm load). Increase output of audio generator until output meter reads 220 mW output. Audio input should beless than 200 mV .
5. Reconnect R.F. Generator to antenna input, and adjust it to 0.5 uV EMF output. Set volume control (V) for 100 mW output. Check SINAD reading should not be less than 12 db .

* When adjusting controls, use a screwdriver with an insulated blade to avoid transistor damage due to accidental contact with exposed leads e

4.3

TR ANSMITTER
A. GENERAL

Remove the unit from its case, and connect it to the power supply.
Connect a 50 ohm RF wattmeter to the antenna connector. Set transmitter permanently on by shorting the TRANS button with a short jumper.

B. ALIGNMENT

NOTE: Be careful not to tune the transmitter to the image frequency, which is close to the channel frequency. For USB units it is 912 KHz above the channel frequency. For LSB units, it is 912 KHz below the channel frequency.

1. Remove crystals.
2. Connect the RF signal generator to the base of Q212 thru a. 01 uF capacitor. Tune the generator to the channel frequency and set its output to 2V. EMF. Turn the channel switch (F) to the channel being used.
3. Adjust C246/1 (or /2 depending on channel) and L216/1 (or /2) for maximum output.
4. Switch to the other channel, reset the frequency, and adjust $\mathrm{C} 246 / 2$ (or / 1) and L216/2 (or / 1) for maximum output.
5. The following procedure is suggested as the easiest way to ensure setting up on the correct frequency.
(a) Turn R249 (balanced mixer control) fully CCW.
(b) With the RF signal generator set to the channel frequency, inject a signal of 50 mV through pin 45 of the printed circuit board.
(c) Set R257 (channel gain control) to mid point, and set R233 to mid-point.
(d) Adjust T202 and T203 for maximum output, reducing the generator output progressively as transmitter output increases. Keep output below 5 watts for proper tuning. When tuning double tuned coils, always start with the cores at the ends of the coil, away from each other, and turn towards the center. (T202 is doubled tuned above 6 MHz).
(e) Adjust R249 for a minimum peak on the output meter.
(f) Disconnect the generator and re-install crystals.
(g) Set R204 (transmitter audio gain) fully CW. To adjust see paragraph C3.
(h) Connect the two audio oscillators to pin B of the microphone socket. Tune one oscillator to 1 KHz and the other to 1.6 KHz . Output of each oscillator should be 2 mV .
(i) Touch up the tuning of T202 and T203, C246 and L2 16 for maximum output on the RF wattmeter. Adjust R257 for 5 watts output, RMS.

C. SPECIFICATION TESTS

1. With the equipment connected as in para. B, loosely couple the oscilloscope, or if available, a spectrum analyzer to the antenna output. (Do not connect a low impedance scope or analyzer directly to the antenna). Short pin B of the microphone socket to ground. Adjust C210 and R223 (balanced modulator control) for minimum carrier output. C210 (pin 51 on the printed circuit board) should be connected to pin 48 or pin 49, whichever pin gives the minimum output. The carrier and any noise modulation should be at least 40 dB below either of the two tones. If no spectrum analyzer is available, adjust R249 for minimum output as shown on the oscilloscope. This should be done on a higher frequency channel. A more accurate method is outlined in the following paragraph.
2. Remove short from pin B, and with the two audio generators connected as in para B-5 (h), adjust R249 for minimum HFO indication. This is the mixer balance control and is used to balance out the HFO frequency from the mixer output. Observe the two tone pattern on the oscilloscope (Figure 10) and adjust R249 until any 'furring' at the edges of the pattern become sharp and clear. When using a spectrum analyzer, it should be set up on the HFO frequency, and R249 adjusted for minimum. This adjustment should be done on the higher frequency channel as the effect of R249 is sharper at higher frequencies: it should not be re-adjusted on the lower frequency channel. HFO output should be at least 37 dB below either of the two tones.
3. ALC: Reduce output to 3 W . RMS by turning R 204 CCW . Increase each input tone by 10 dB . Adjust ALC control R 233 for 5 W . RMS output.

* See para G for alternate alignment procedure in place of steps g, h and i, below, when audio generators are not available.

4. Using the spectrum analyzer, measure the intermodulation products. They should be 20 dB or more below one of the two tones with an output of 5 watts RMS. Re-adjust L216 and C 246 for best I. P. (Intermodulation Products) reading. Vary the supply voltage from 9 to 16 volts. No instability should result.
5. Remove the two tone signal. Press the TONE button: output should be $5.9 \pm .5$ watts RMS. The harmonic distortion should not exceed -30 dB with respect to signal.
6. Meter Adjustment: Turn the supply voltage down to $10 \mathrm{~V} . \mathrm{DC}$. Adjust R304 until meter reads $1 / 4$ scale.
D. LOWER SIDEBAND OPERATION (LSB)
7. The setting-up procedure as listed above is for USB. For LSB operation select HFO Crystal as in Sect. 1. This will give an oscillator frequency 456.500 KHz below the suppressed carrier frequency. Alignment for LSB is the same as detailed for USB in para ' B '.
E. H.F.O CONNECTIONS (Figure 9)
8. Simplex Operation.

Connect together contacts 2 and 11 on S105A.
Connect together contacts 10 and 11 on S105B
Channels $1,2,3$ and 4 are now used, with channels $1 \& 3$, and $2 \& 4$ the related pairs (using the same tuned circuits)
2. Simplex-Duplex Operation.

On the printed circuit board, connect pin N to L, also pin G to H. Channel 2 is now normal simplex channel (using Xtal 2) Channel 3 is now normal duplex channel (using Xtal 3 for transmit and Xtal 4 for receive). Note: there is no separate netting adjustment for receiver Xtal 4.
3. Two Duplex Channels.

Connect together S105A contact \#11 and S105B, contact \#11. Connect together pins K and L on the printed circuit board. Connect together pins G and M on the printed circuit board Channel 3 uses Xtal 3 for transmit and Xtal 4 for receive. Channel 4 uses Xtal 1 for transmit and Xtal 2 for receive.

Note: there is no separate netting adjustment for receiver crystals 4 and 2, also when channel 4 duplex is used, the transmit netting capacitor for transmit crystal 1 is the trimmer adjacent to Xtal 4.

F. H.F.O. NETTING

1. Check connection as detailed in para E, and Figure 9. Refer to para G for correct value of C411.
2. Set clarifier control to mid position.
3. Connect frequency counter to pin 45 on the printed circuit board. Operate the transmitter without any modulation and adjust C412 to within 10 Hz of frequency.
G. ALTERNATE TX ALIGNMENT See Note, para B5, (f).
4. Set ALC control R233 fully clockwise (no ALC action). Turn R204 (transmitter audio gain) fully counterclockwise.
5. Apply 455 KHz through $2.2 \mathrm{~K} \Omega$ to TP 52 (filter IN). Adjust level to read 175 mV at TP52. This is equivalent level for 2.5 W out, single tone.
6. Adjust R257 (channel gain) for 2.5W RMS out. (No audio input).
7. Switch off 455 KHz (Leave generator connected).
8. With both TRANS and TONE buttons pressed adjust R204 (Tx audio gain) for 175 mV at TP52. This should also give 2. 5W RMS out.
9. Switch 455 KHz generator on again. With both TRANS and TONE buttons pressed, check for proper two-tone envelope on scope. Touch up T202, (T203), C246, L216 for best envelope. DisregardRF wattmeter reading, unless watt-meter is a thermo type (slow reading), which should read about 5 W . Peaks of 2 -tone pattern on scope should be about twice the amplitude of single tone. Release tone button momentarily for single tone amplitude indication.
10. Disconnect 455 KHz generator. Set ALC control R233 fully CCW. (full ALC action)
11. With TRANS and TONE buttons pressed, first adjust R204 (Tx audio gain) for full gain (fully clockwise), then adjust R233 (ALC control) for 6 W output.
12. Press TRANS and TONE buttons and turn R204 (Tx audio gain) down slowly until the output just begins to drop (usually about half way).

To obtain the correct temperature compensation for the crystals, the following capacitors must be connected in the circuit as shown below, for the specific crystals.

Xtal 1 (Y410-1): Connect C411-1 between P and M on the board Xtal 2 (Y410-2): Connect C41l-2 between N and R on the board Xtal 3 (Y410-3): Connect C411-3 between H and S on the board Xtal 4 (Y410-4): Connect C411-4 between T and V on the board

Note: C424 is used only for LSB operation below 2.45 MHz .

Crystal Code
(on side of case)

Red

Yellow
Green
Blue
Two Red
Two Yellow
Two Green
Two Blue

Capacitor Used for C411

100 pF N470
100 pF N750
47pF NPO Plus 47pF N2200 *
100pF N 1500
220 pF Silver Mica $\pm 10 \%$
220 pF Silver Mica $\pm 10 \%$
150 pF Silver Mica $\pm 10 \%$
100 pF Silver Mica $\pm 10 \%$
*connected in parallel
I. CHANNEL KITS

The Table on the following page details the parts used for the various channel kits that are available with the CP24.

FIGURE 9
H.F. O. CONNECTIONS

	mitter annel Kits	T202	C234	$\left\lvert\, \begin{gathered} \mathrm{R} 267 \\ \text { (Ohms) } \end{gathered}\right.$	L2 10	C245	C248	L216	C253 ${ }^{\circ}$	C254	C255	C256	R EMARKS
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \dot{1} \\ & \sim \\ & \alpha \\ & \alpha \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 1.6 \mathrm{MHz} \\ & \text { to } \\ & 1.9 \mathrm{MHz} \\ & \hline \end{aligned}$	188-158	NIL	$\begin{gathered} 100 \\ 1 / 4 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{aligned} & 18 \mathrm{uH} \\ & \text { WD } 180 \end{aligned}$	$\begin{aligned} & \text { Mylar } \\ & \text { My } \\ & 10 \%, 200 \end{aligned}$	$\begin{aligned} & \hline \text { MyluF } \\ & \text { My } \\ & 10 \% \\ & 200 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 188950-007 \\ & \text { (Violet) } \end{aligned}$	$\begin{aligned} & \hline 2200 \mathrm{pF} \\ & \text { (Mica) } \\ & 1090 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .0033 \mathrm{uF} \\ & \text { Myour } \\ & 10 \% 0 \\ & 200 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline .0047 \mathrm{uF} \\ \text { Mylar } \\ 10 \% 0 \\ 200 \mathrm{~V} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .0015 \mathrm{uF} \\ \mathrm{Mylar} \\ 10 \% \\ 200 \mathrm{~V} \\ \hline \end{array}$	For Channels 1 and 3, join A to pin 2 of $\mathrm{T} 202 / 1$: Join 44 to pin 7 of T202/1.
	$\begin{array}{\|l\|} \hline 1.9 \mathrm{MHz} \\ \text { to } \\ 2.25 \mathrm{MHz} \\ \hline \end{array}$	188-158	NIL	$\begin{gathered} 100 \\ 1 / 4 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} 18 \mathrm{uH} \\ \text { WD } 180 \\ \hline \end{gathered}$	O033uF Mylar $10 \% 0$ 200 V	$\begin{aligned} & .001 \mathrm{uF} \\ & \mathrm{Mylar} \\ & 10 \% \% \\ & 200 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 188950-007 \\ \text { (Violet) } \end{gathered}$	$\begin{aligned} & \hline 2200 \mathrm{pF} \\ & 10 \% \mathrm{ca} \\ & 500 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Mylar } \\ 10033 \mathrm{u} \\ 200 \mathrm{~V} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0047 \mathrm{uF} \\ \mathrm{Mylar} \\ 10 \% \\ 200 \mathrm{~V} \\ \hline \end{array}$	NIL	For Channels 2 and 4 , join B to pin 2 of T202/2: join 43 to pin 7 of T202/2
$\begin{aligned} & \vec{n} \\ & 0 \\ & 1 \\ & \dot{1} \\ & \sim \\ & \alpha \\ & \vdots \\ & \vdots \\ & -1 \end{aligned}$	$\begin{gathered} 2.25 \mathrm{MHz} \\ \text { to } \\ 2.75 \mathrm{MHz} \end{gathered}$	188-160		$\begin{gathered} 220 \\ 1 / 4 \mathrm{~W} . \\ \hline \end{gathered}$	$\begin{array}{\|c} 10 \mathrm{uH} \\ \mathrm{WD} 100 \\ \hline \end{array}$	0033uF Mylar 10% 200 V		$\begin{gathered} 188950-006 \\ \text { (Blue) } \end{gathered}$	$\left\lvert\, \begin{aligned} & 2200 \mathrm{pF} \\ & 10 \mathrm{Mica} \\ & 500 \mathrm{~V} \end{aligned}\right.$	$\begin{aligned} & \hline .0022 \mathrm{uF} \\ & \text { Myfar } \\ & 200 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0033 \mathrm{uF} \\ & \mathrm{Mylar} \\ & 10 \% \\ & 200 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 001 \mathrm{uF} \\ & \mathrm{Mylar} \\ & 200 \mathrm{~V} \\ & \hline \end{aligned}$	For Channels 1 and 3 , join A to pin 2 of $\mathrm{T} 202 / \mathrm{l}$: join 44 to pin 7 of T202/1
	$\begin{array}{r} 2.75 \mathrm{MHz} \\ \text { to } \\ 3.1 \mathrm{MHz} \\ \hline \end{array}$	188-160		$\begin{aligned} & 220 \\ & 1 / 4 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{gathered} 10 \mathrm{uH} \\ \text { WD } 100 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline .0033 \mathrm{uF} \\ \text { Mylar } \\ 10 \% \% \\ 200 \mathrm{~V} \\ \hline \end{array}$		$\begin{aligned} & 188950-006 \\ & \text { (Blue) } \end{aligned}$	$\begin{aligned} & 2200 \mathrm{pF} \\ & \mathrm{Mjoca} \\ & 10 \% \\ & 500 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline .0022 \mathrm{uF} \\ \text { Mylar } \\ 10 \% 0 \\ 200 \mathrm{~V} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .0033 \mathrm{uF} \\ \mathrm{Mylar} \\ 10 \% \\ 200 \mathrm{~V} \\ \hline \end{array}$	NIL	For Channels 2 and 4 , join B to pin 2 of $\mathrm{T} 202 / 2$: join 43 to pin 7 of T202/2
$\begin{gathered} \underset{\sim}{n} \\ \dot{\alpha} \\ \dot{H} \\ \underset{\sim}{\alpha} \\ \dot{\alpha} \\ \infty \\ \hline \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{MHz} \\ & \text { to } \\ & 3.8 \mathrm{MHz} \\ & \hline \end{aligned}$	188-162	$\begin{array}{\|c} 1500 \mathrm{pF} \\ \mathrm{Mica} \\ 5 \% \quad 100 \mathrm{~V} \end{array}$	470 $1 / 4 W$	$\begin{gathered} 6.8 \mathrm{uH} \\ \mathrm{WD} 68 \mathrm{G} \end{gathered}$	$\begin{aligned} & \hline .0022 \mathrm{uF} \\ & \mathrm{Myy} \text { ar } \\ & \mathrm{lo} \mathrm{\%} \\ & 200 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 188950-006 \\ \text { (Green) } \end{gathered}$	$\begin{gathered} 1500 \mathrm{pF} \\ \text { Mica } \\ 10 \% 500 \mathrm{~F} \\ \hline \end{gathered}$	$\begin{aligned} & .001 \mathrm{uF} \\ & \text { Mylar } \\ & 10 \% 200 \mathrm{~V} \end{aligned}$	$\left[\begin{array}{l} .0022 \mathrm{uF} \\ \mathrm{Mylar} \\ 10 \% 200 \mathrm{~V} \end{array}\right.$	Mylar Mylar $10 \% 200$	For Channels 1 and 3, join A to $D:$ join 44 to pin 7 of $\mathrm{T} 202 / 1$: join pin 3 of $\mathrm{T} 202 / 1$ to $\mathrm{T} 202 / 1$ pin 7.
	$\begin{aligned} & \text { 3. } 8 \mathrm{MHz} \\ & \text { to } \\ & 4.3 \mathrm{MHz} \end{aligned}$	188-162	$\begin{aligned} & 1500 \mathrm{pF} \\ & \text { Mica } \\ & 5 \% 100 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 470 \\ & 1 / 4 W \end{aligned}$	$\begin{array}{r} 6.8 \mathrm{uH} \\ \mathrm{WD} 68 \mathrm{G} \end{array}$	$\begin{aligned} & .0022 \mathrm{uF} \\ & \mathrm{Mylar} \\ & 10 \% 200 \mathrm{~V} \end{aligned}$		188950-005 (Green) :	$\begin{gathered} 1500 \mathrm{pF} \\ \text { Mica } \\ 10 \% 500 \mathrm{~V} \end{gathered}$.001 uF Mylar $10 \% 200 \mathrm{~V}$	$\left\lvert\, \begin{aligned} & \text { Mylar } \\ & 10 \% 200 \mathrm{~V} \end{aligned}\right.$	NIL	For Channels 2 and 4 , join B to F : join 43 to $\mathrm{T} 202 / 2$ pin 7: join T202/2 pin 3 to T202/2 pin 7.
$\begin{aligned} & m \\ & \underset{\sim}{\infty} \\ & \dot{1} \\ & \underset{\sim}{1} \\ & \underset{\sim}{1} \\ & 1 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { 4. } 3 \mathrm{MHz} \\ & \text { to } \\ & 5.2 \mathrm{MHz} \\ & \hline \end{aligned}$	188-164	$\begin{aligned} & 820 \mathrm{pF} \\ & \text { Mica } \\ & 5 \% 300 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 470 \\ & 1 / 4 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9 \mathrm{uH} \\ & \text { WD39G } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline .0015 \mathrm{uF} \\ \text { Mylar } \\ 10 \% 200 \mathrm{~V} \\ \hline \end{array}$.	$\begin{gathered} 188950-004 \\ \text { (Yellow) } \end{gathered}$	$\begin{array}{\|c\|} \hline 1200 \mathrm{pF} \\ \mathrm{Mica} \\ 10 \% 500 \mathrm{~V} \\ \hline \end{array}$.0015 uF Mylar $10 \% 200 \mathrm{~V}$	560 pF Mica $10 \% 300 \mathrm{~V}$	For Channels 1 and 3 , join A to $D:$ join 44 to $\mathrm{T} 202 / 1$ pin 7 : join T202/1.pin 3 to T202/l pin 7.
	$\begin{aligned} & 5.2 \mathrm{MHz} \\ & \text { to } \\ & 6.0 \mathrm{MHz} \\ & \hline \end{aligned}$	188-164	$\begin{aligned} & 820 \mathrm{pF} \\ & \mathrm{Mica} \\ & 5 \% 300 \mathrm{~V} \\ & \hline \hline \end{aligned}$	$\begin{aligned} & 470 \\ & 1 / 4 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{gathered} 3.9 \mathrm{uH} \\ \mathrm{WD} 39 \mathrm{G} \end{gathered}$	$\begin{aligned} & .0015 \mathrm{uF} \\ & \text { Mylar } \\ & 10 \% 200 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 188950-004 \\ & \text { (Yellow) } \end{aligned}$	$\begin{gathered} 1200 \mathrm{pF} \\ \mathrm{Mica} \\ 10 \% 500 \mathrm{~V} \end{gathered}$		$\begin{aligned} & .0015 \mathrm{uF} \\ & \text { Mylar } \\ & 10 \% 200 \mathrm{~V} \end{aligned}$	NIL	For Channels 2 and 4 , join B to F : join 43 to T202/2 pin 7: join T202/2 pin 3 to T202/2 pin 7.
	$\begin{aligned} & 6.0 \mathrm{MHz} \\ & \text { to } \\ & 7.3 \mathrm{MHz} \end{aligned}$	$188-166$	330 pF Mica $10 \% 300 \mathrm{~V}$	$\begin{aligned} & 470 \\ & 1 / 4 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{array}{r} 2.2 \mathrm{uH} \\ \mathrm{WD} 22 \mathrm{G} \\ \hline \end{array}$	$\begin{aligned} & 1200 \mathrm{pF} \\ & \text { Mica } \\ & 10 \% 100 \mathrm{~V} \\ & \hline \end{aligned}$!	$\begin{gathered} 188950-003 \\ \text { (orange) } \end{gathered}$	$\begin{array}{\|c\|} \hline 1000 \mathrm{pF} \\ \mathrm{Mica} \\ 10 \% 500 \mathrm{~V} \\ \hline \end{array}$		1200 pF Mica $10 \% 100 \mathrm{~V}$	$\begin{aligned} & 330 \mathrm{pF} \\ & \text { Mica } \\ & 10 \% 300 \mathrm{~V} \end{aligned}$	For Channels 1 and 3, join A toD: join 44 to $\mathrm{T} 202 / 1 \mathrm{pin} 5$.
	$\begin{array}{\|} \text { 7. } 3 \mathrm{MHz} \\ \text { to } \\ 8.3 \mathrm{MHz} \\ \hline \end{array}$	188-166	$\left\{\begin{array}{l} 330 \mathrm{pF} \\ \text { Mica } \\ 10 \% 300 \mathrm{~V} \end{array}\right.$	$\begin{aligned} & 470 \\ & 1 / 4 \mathrm{~W} \end{aligned}$	$\begin{array}{\|c} 2.2 \mathrm{uH} \\ \mathrm{WD} 22 \mathrm{G} \end{array}$	$\begin{array}{\|l\|} \hline 1200 \mathrm{pF} \\ \text { Mica } \\ 10 \% 100 \mathrm{~V} \end{array}$	\%	$\begin{aligned} & 188950-003 \\ & \text { (orange) } \end{aligned}$	$\begin{gathered} 1000 \mathrm{pF} \\ \text { Mica } \\ 10 \% 500 \mathrm{~V} \end{gathered}$		1200 pF Mica $10 \% 100 \mathrm{~V}$	NIL	For Channels 2 and 4, join B toF: join 43 to $\mathrm{T} 202 / 2$ pin 5.
	$\begin{aligned} & 8.3 \mathrm{MHz} \\ & \text { to } \mathrm{MHz} \end{aligned}$	188-168	$\begin{array}{\|c} 120 \mathrm{pF} \\ \mathrm{Mica} \\ 10 \% 500 \mathrm{~V} \end{array}$		$\begin{aligned} & 1.2 \mathrm{uH} \\ & \text { WD } 126 \end{aligned}$	820 pF Mica $10 \% 300 \mathrm{~V}$		$\begin{gathered} 188950-002 \\ \text { (red) } \end{gathered}$	820 pF Mica $10 \% 500 \mathrm{~V}$		$\begin{aligned} & 820 \mathrm{pF} \\ & \mathrm{Mica} \\ & 10 \% 300 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 330 \mathrm{pF} \\ & \mathrm{Mjca} \\ & 10 \% 500 \mathrm{~V} \end{aligned}$	For Channels 1 and 3, join A to $\mathrm{D}:$ join 44 to $\mathrm{T} 202 / 1$ pin 5.
	$\begin{array}{\|c} 9.9 \mathrm{MHz} \\ \text { to } \\ 11.4 \mathrm{MHZ} \end{array}$	188168	120 pF Mica $10 \% 500 \mathrm{~V}$		$\begin{gathered} 1.2 \mathrm{uH} \\ \mathrm{WD} 12 \mathrm{G} \end{gathered}$	$\begin{array}{\|c} \hline 820 \mathrm{pF} \\ \text { Mica } \\ 10 \% 300 \mathrm{~V} \end{array}$		$\begin{gathered} 188950-002 \\ \text { (red) } \end{gathered}$	820 pF Mica $10 \% 500 \mathrm{~V}$		820 pF Mica $10 \% 300 \mathrm{~V}$	NIL	For Channels 2 and 4, join 43 to T202/2 pin 5: join B to F
$189-924-036$	$\begin{aligned} & 11.4 \mathrm{MHz} \\ & \text { to } \\ & 13.5 \mathrm{MHz} \end{aligned}$	188-170		.	$\left\|\begin{array}{l} 0.68 \mathrm{uH} \\ 203-11 \end{array}\right\|$	560 pF Mica $0 \% 300 \mathrm{~V}$		$\begin{aligned} & 188950-001 \\ & \text { (brown) } \end{aligned}$	680 pF Mica $0 \% 500 \mathrm{~V}$		$\begin{aligned} & 680 \mathrm{pF} \\ & \mathrm{Mica} \\ & 10 \% 300 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 270 \mathrm{pF} \\ & \mathrm{Mica} \\ & 10 \% 500 \mathrm{~V} \end{aligned}$	For Channels 1 and 3 , join A to D: join 44 to $\mathrm{T} 202 / 1$ pin 5.
	$\left\lvert\, \begin{array}{\|cc\|}13.5 \mathrm{MHz} \\ \text { to } \\ 15.0 \mathrm{MHz}\end{array}\right.$	188-170			$\begin{aligned} & 0.68 \mathrm{uH} \\ & 203-11 \end{aligned}$	560 pF Mica $10 \% 300 \mathrm{~V}$		$\begin{gathered} 188950-001 \\ \text { (brown) } \end{gathered}$	680 pF Mica $10 \% 500 \mathrm{~V}$		680 pF Mica $10 \% 300 \mathrm{~V}$	NIL	For Channels 2 and 4, join 43 to T202/2 pin 5: join B to F.

r

OUTPUT PATTERN OF TRANSMITTER ADJUSTED FOR
MINIMUM DISTORTION

OSCILLOSCOPE. TRACES SHOWING EFFECT ON TRANSMITTER OUTPUT OF TWO EQUAL AUDIO TONES APPLIED TO THE MICROPHONE INPUT

FIGURE 10

PRINTED CIRCUIT BOARD ASSEMBLY 189-925

REF	DESCRIPTION	SUPPLIER
C100	CAPACITOR, fixed, $05 \mathrm{uF},+80-20 \%, 25 \mathrm{~V} . \mathrm{DC}$	Erie 5855
C102	CAPACITOR, fixed, . $01 u \mathrm{~F}, \pm 80-20 \%, 25 \mathrm{~V} . \mathrm{DC}$	Erie 5835
C103	Same as Cl02	
C104	Same as Cl02	
C105	Same as C100	
C106	Same as Cl02	
C 107	Same as C100	
C108	CAPACITOR, fixed, $1300 \mathrm{pF}, \pm 5 \%, 100 \mathrm{~V} . \mathrm{DC}$	Elmenco DM15
C 109	Same as Cl02	
Cl10	CAPACITOR, fixed, 0.47uF, +80-20\%, 25V.DC	Erie 5865
C111	CAPACITOR, fixed, $180 \mathrm{pF}, \pm 5 \%, 100 \mathrm{~V} . \mathrm{DC}$	Elmenco DM-15
C112	Same as Cl00	
C113	Same as Cl02	
C114	Same as Cl00	
C115	CAPACITOR, fixed, $1000 \mathrm{pF}, \pm 10 \%, 500 \mathrm{~V} . \mathrm{DC}$	Erie 851
C116	Same as Cl00	
C117	Same as C102	
C118	Same as Cl02	
C119	Same as Cl02	
C120	CAPACITOR, fixed, 10uF, 20V.DC	CMC 188-188H
C 121	CAPACITOR, fixed, . $2 \mathrm{uF},{ }^{\circ}+80-20 \%, 25 \mathrm{~V} . \mathrm{DC}$	Erie 5815
C 122	Same as Cl02	
C123	Same as C102	
C124	Same as Cl02	
C125	Same as Cl21	
C 126	Same as Cl2l	
C127	CAPACITOR, fixed, . $\mathrm{luF},+80-20 \%$, $25 \mathrm{~V} . \mathrm{DC}$	Erie 5815
C 128	Same as Cl20	
C129	CAPACITOR, fixed, 1. uF, 20V. DC	CMC 188-188K
C130	Same as C102	
C131	Same as Cl20	
C132	CAPACITOR, fixed, 47uF, 6V. DC	CMC 188-188J
C 133	CAPACITOR, fixed, $3300 \mathrm{pF}, \pm 10 \%$, 500 V . DC	Erie 875
C134	Same as Cl20	
C136	CAPACITOR, fixed, 68uF, 15V. DC	CMC 188-188C
C137	Same as C120	
C138	CAPACITOR, fixed, 2. $2 \mathrm{uF}, 20 \mathrm{~V} . \mathrm{DC}$	CMC 188-188L
C139	CAPACITOR, fixed, luF, $\pm 20 \%, 250 \mathrm{~V}$. DC	TCC PMX 4
C141	CAPACITOR, fixed, . $047 \mathrm{uF}, \pm 20 \%, 250 \mathrm{~V} . \mathrm{DC}$	TCC PMX 3
C142	Same as Cl4l	
C143	Same as C129	
C201	CAPACITOR, fixed, luF, 20V. DC	CMC 188-188K
C202	CAPACITOR, fixed, $1000 \mathrm{pF}, \pm 10 \%, 500 \mathrm{~V} . \mathrm{DC}$	Erie 851
C203	CAPACITOR, fixed, $10 \mathrm{uF}, 20 \mathrm{~V} . \mathrm{DC}$	CMC 188-188H
C204	Same as C201	
C205	Same as C201	

REF	DESCRIPTION	SUPPLIER
$C_{C 206}$	CAPACITOR, fixed, 47uF, 6V. DC	CMC 188-188J
こ207	Same as C201	
C208	CAPACITOR, fixed, . $01 \mathrm{uF},+80-20 \%, 25 \mathrm{~V}$. DC	Erie 5835
C209	CAPACITOR, fixed, . $05 \mathrm{uF},+80-20 \%, 25 \mathrm{~V}$. DC	Erie 5855
C210	CAPACITOR, variable	CMC 187-777-009
C211	Same as C208	
C212	CAPACITOR, fixed, . $14 \mathrm{~F},+80-20 \%, 25 \mathrm{~V}$. DC	Erie 5815
C213	Same as C208	
C214	Same as C203	-
C215	Same as C201	
C218	CAPACITOR, fixed, . $033 \mathrm{uF}, \pm 20 \%, 250 \mathrm{~V}$. DC	TCC PMX 5
C219	Same as C218	
C221	Same as C218	
C223	Same as C218	
C224	Same as C206	
C225	Same as C208	
C226	Same as C209	
C227	CAPACITOR, fixed, $3300 \mathrm{pF}, \pm 10 \%$, 500 V . DC	Erie 875
C229	Same as C209	
C230/1	CAPACITOR, fixed, 2. $2 \mathrm{pF}, \pm .25 \mathrm{pF}$, 500V.DC NPO	RMC Discap
C230/2	Same as C230/l.	
C231	Same as C209 .	
C232	Same as C209	
;233	Same as C2l2	
C234	Part of Multichannel kits - See page 4-8	
C235/1	Same as C208	
C235/2	Same as C208	;
C236	Same as C202	,
C237	Same as C2l2	
C238	Same as C202	
C239	Same as C202	
C241	Same as C212	
C243	Same as C2l2	
C244	Same as C208	
C245		
C248		
C253	Part of Multichannel kit. See page 4-8	
C254	Part of Multichannel kit.See page 4-8	
C255		
C256		.
C260	Same as C209	
C301	CAPACITOR, fixed, $10 u F, 20 \mathrm{~V}$. DC	CMC 188-188H
C312	Same as C301	
C401	CAPACITOR, fixed, $10 \mathrm{uF}, 20 \mathrm{~V}$. DC	CMC 188-188H
C402	CAPACITOR, fixed, $39 \mathrm{pF}, \pm 5 \%, 100 \mathrm{~V}$. DC	Elmenco DM-15
-403	Same as C402	
C404	CAPACITOR, fixed, luF, 20V. DC	CMC 188-188K
- C405	CAPACITOR, fixed, . $01 u \mathrm{~F},+80-20 \%, 25 \mathrm{~V} . \mathrm{DC}$	Erie 5835

REF	DESCRIPTION	SUPPLIER
C406	Same as C405	
C407	CAPACITOR, fixed, $1000 \mathrm{pF}, \pm 10 \%$, 500 V . DC	Erie 851
C412/1	CAPACITOR, variable	CMC 187-777-009
C412/2	Same as C412/1	
C412/3	Same as C412/1	
C412/4	Same as C412/1	
C413	CAPACITOR, fixed, $10 \mathrm{pF}, \pm 10 \%$, 1000V. DC	RMC Discap Type C
C415	Same as C405	
C416	CAPACITOR, fixed, $220 \mathrm{pF}, \pm 5 \%, 100 \mathrm{~V}$. DC	Elmenco DM15
C417	CAPACITOR, fixed, . $14 \mathrm{~F} \pm 20 \%$, 250V. DC	TCC PMX4
C418	Same as C405	
C419	Same as C405	
C420	Same as C417	
C421	CAPACITOR, fixed, . $05 \mathrm{uF},+80-20 \%$, 25 V . DC	Erie 5855
C 422	CAPACITOR, fixed, 47pF, $\pm 5 \%$, 100V. DC	Elmenco DM-15
C 423	Same as C422	
C424	Part of Multichannel Kits.see page 4-8	
R 102	RESISTOR, fixed, 12 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-123
R 103	RESISTOR, fixed, 10 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-103
R 104	RESISTOR, fixed, 220 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-221
R 105	RESISTOR, fixed, 1000 ohms, $\pm 5 \%, \mathrm{l} / 4 \mathrm{~W}$	CMC 701-102
R 106	RESISTOR, fixed, 100 ohms, $\pm 10 \%, \mathrm{l} / 4 \mathrm{~W}$	CMC 702-101
R 107	RESISTOR, fixed, 1000 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-102
R 108	RESISTOR, fixed, 22 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-223
R109	RESISTOR, fixed, 390 ohms, $\pm 10 \%$, $1 / 4 \mathrm{~W}$	CMC 702-391
R111	RESISTOR, fixed, 3.3 K ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-332
R 112	Same as R103	
R113	RESISTOR, fixed, 5.6 K ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-562
R114	RESISTOR, fixed, 2.7K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-272
R115	Same as R107	
R 116	Same as R107	
R117	Same as R106	
R 118	RESISTOR, fixed, 47 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-470
R 119	Same as R103	
R 120	RESISTOR, fixed, 560 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-561
R 122	Same as R103	
R 123	RESISTOR, fixed, 680 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-681
R 124	RESISTOR, fixed, 330 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-331
R 125	Same as R103	
R126 ${ }_{1}$	Same as R108	
R 127	Same as R107	
R 128	RESISTOR, fixed, 2.2 K ohms, $\pm 10 \%$, $1 / 4 \mathrm{~W}$	CMC 702-222
R 129	RESISTOR, variable, 1 K ohms, $\pm 30 \%, 1 / 4 \mathrm{~W}$	Murata 1417
R 131	RESISTOR, fixed, 56 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-560
R 132	RESISTOR, fixed, 4.7 K ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-472
R 133	RESISTOR, fixed, 27 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-273
R 134	Same as R114 \quad	

REF	DESCRIPTION	SUPPLIER	
R 205	RESISTOR, fixed, 470 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-471	
R 207	Same as R201		
R208	RESISTOR, fixed, 2.7 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-272	
R209	RESISTOR, fixed, 5.6 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-562	
R210	Same as R209		
R212	RESISTOR, fixed, 18 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-180	
R213	RESISTOR, fixed, 330 ohms, $\pm 5 \%$, $1 / 4 \mathrm{~W}$	CMC 701-331	
R214	RESISTOR, fixed, 680 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-681	
R 215	RESISTOR, fixed, 220 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-221	
R 216	Same as R215		
R 217	Same as R215		
R218	Same as R215		
R219	RESISTOR, fixed, 47 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-470	
R 221	Same as R219		
R 222	RESISTOR, fixed, 270 ohms, $\pm 10 \%$, $1 / 4 \mathrm{~W}$	CMC 702-271	
R 223	RESISTOR, variable, 100 ohms, $\pm 30 \%, 1 / 4 \mathrm{~W}$	CTS Type X-201	
R 224	Same as R222		
R225	RESISTOR, fixed, 15 K ohms, $\pm 5 \%$, l/4W	CMC 701-153	
R 226	Same as R209		
R 227	RESISTOR, fixed, 100 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-101	
R 228	RESISTOR, fixed, 1 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-102	
R 229	RESISTOR, fixed, 1.2 K ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-122	
R 232	RESISTOR, fixed, 470 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-471	
R 233	RESISTOR, variable, 10K ohms, $\pm 30 \%, 1 / 4 \mathrm{~W}$	Murata 1417	
R 236	RESISTOR, fixed, 10 K ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-103	
R237	Same as R204		
R 238	RESISTOR; -fixed, 4.7K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-472	
R 239	RESISTOR, fixed, 12 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-123	
R240	RESISTOR, fixed, l. 5 K ohms, $\pm 5 \%$, $1 / 4 \mathrm{~W}$	CMC 701-152	
R241	RESISTOR, fixed, 15 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-150	
R 242	RESISTOR, fixed, 390 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-391	
R 243	RESISTOR, fixed, 100 K ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-104	
R244	RESISTOR, fixed, 10 ohms, Thermistor	Siemens 151-10	
R 245	RESISTOR, fixed, 2.7 K ohms, $\pm 10 \%$, $1 / 4 \mathrm{~W}$	CMC 702-272	
R 246	RESISTOR, fixed, 8. 2 K ohms, $\pm 10 \%$, $1 / 4 \mathrm{~W}$	CMC 702-822	
R 247	RESISTOR, fixed, 6.8 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-682	
R248	RESISTOR, fixed, 27 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-273	
R 249	Same as R233		
R250	Same as R219		
R251	RESISTOR, fixed 220 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-221	
R252	Same as R251		
-R253	Same as R248		
R254	Same as R247	---	
R 255	Same as R215		
R256	Same as R251		
R257/1	Same as R204		
R257/2	Same as R204		
R258/1	Same as R243		

i REF	DESCRIPTION	SUPPLIER
OR258/2	Same as R243	
LR259/1	Same as R243	
(259/2	Same as R243	
R 260	RESISTOR, fixed, 10 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-103
R261/1	Same as R260	
R261/2	Same as R260	
R 262	Same as R251	
R263	RESISTOR, fixed, 1.2 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-122
R 264	Same as R238	
R265	RESISTOR, fixed, 220 ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$	CMC 931-221
R 266	Same as R227	
R267	Part of Multichannel Kits - see page 4-8	
R 268	RESISTOR, fixed, 560 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-561
R 269	Same as R208	
R270	RESISTOR, fixed, 47 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-470
R271	RESISTOR, fixed, 100 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 701-101
R272	Same as R268	
R 274	Same as R 242	
R 275	RESISTOR, fixed, 5.6 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-056
R 276	Same as R240	
R277	RESISTOR, fixed, 33 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-330
R279	Same as R242	
R281	Same as R240	
マ 310	RESISTOR, fixed, 3.9K ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-392
¢ 211	RESISTOR, fixed, 3.3 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-332
R 312	RESISTOR, fixed, 10 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-103
R 401	RESISTOR, fixed, 220 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 701-221
R 402	RESISTOR, fixed, 100 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-104
R 403	RESISTOR, fixed, 220 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-224
R 404	RESISTOR, fixed, $1.8 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-182
R 405	RESISTOR, fixed, 560K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-564
R 406	RESISTOR, fixed, 1. 5 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-152
R 407	RESISTOR, fixed, 3.9K ohms, $+5 \%, 1 / 4 \mathrm{~W}$	CMC 701-392
R 408	RESISTOR, fixed, 3.3 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-332
R 409	RESISTOR, fixed, 18K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-183*
R 413	RESISTOR, fixed, 1 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-102
R 415	RESISTOR, fixed, 27 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-273
R 416	Same asR 407	
R 417	RESISTOR, fixed, 2.2 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$	CMC 701-222
R 418	Same as R401	
R 419	RESISTOR, fixed, 470 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-471
R 420	RESISTOR, fixed, 100 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-101
R 421	RESISTOR, fixed, P 00 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-101
R 422	RESISTOR, fixed, 1.8 K ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-182
R 423	RESISTOR, fixed, 56 K ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$	CMC 702-563
$\left\{\begin{array}{c} ? 424 \\ \text { CR } 101 \\ \text { CR } 102 \end{array}\right.$	Same as R401 Diode, Type FDH 6027 Same as CR101	Fairchild

- REF	DESCRIPTION	SUPPLIER
CR 103	Same as CR101	
CR104	Same as CR101	
CR 105	Same as CR101	
CR 201	Diode, Type FDH 6027	Fairchild
CR 202	Same as CR201	
CR 203	Same as CR 201	-
CR204	Same as CR 201	
CR 205	Same as CR201	
CR 206	Same as CR201	
CR207	Same as CR201	
CR208/1	Same as CR201	
CR208/2	Same as CR 201	
CR 209/1	Same as CR201	
CR 209/2	Same as CR 201	
CR210	DIODE, zener, IN752A	Fairchild
CR 301	DIODE, zener	CMC 187-798
CR 302	DIODE, Type G 1006	General Instruments
CR 410	DIODE, Type FDH 6027	Fairchild
Q101	TRANSISTOR, Type S24103	Fairchild
Q102	Same as Q101	
Q103	TR ANSISTOR, type S2748	Fairchild
Q104	TRANSISTOR, type 2N4250	Fairchild
Q105	Same as Q103	
Q106	Same as Q104	
Q107	TRANSISTOR, type S22009	Fairchild
Q108	Same as Q103	
Q109	TR ANSISTOR, type S22008	Fairchild
Q110	Same as Q109 , , \%mm	
Q1117	TR ANSISTOR Matched Pair	CMC 187-781
Q112]	Same as Qlll	
Q113	Same as Q103	
Q114	Same as Q103	
Q115	Same as Q107	
Q201	TR ANSISTOR, type S2748	. Fairchild
Q202	TR ANSISTOR, type 2N4250	Fairchild
Q203	Same as Q201	.
Q204	Same as Q201	
Q205	Same as Q201	
Q206	TR ANSISTOR, type S24103	Fairchild
Q207	Same as Q206	
Q208	TRANSISTOR, type S22008	Fairchild
Q209	Same as Q208	
Q210	Same as Q208	
Q211	TRANSISTOR, type S22010	Fairchild
Q301	TR ANSISTOR, type S2748	Fairchild
Q302	TRANSISTOR, type S22008	Fairchild
Q401	TRANSISTOR, type 2N4250	Fairchild
Q402	TRANSISTOR, type S2748	Fairchild

REF ${ }^{\circ}$	DESCRIP TION	SUPPLIER
TRANSCEIVER ASSEMBLY 189-924-001		
Cl01	CAPACITOR, fixed, . $01 \mathrm{uF},+80-20 \%$, $500 \mathrm{~V} . \mathrm{DC}$	RMC Discap, Type SM
C303	CAPACITOR, fixed, . $047 \mathrm{uF}, \pm 20 \%$, $250 \mathrm{~V} . \mathrm{DC}$	TCC PMX3
C304	Same as C303	
C305	Same as C303	
C306	CAPACITOR, fixed, . $01 \mathrm{uF},+80-20 \%, 25 \mathrm{~V} . \mathrm{DC}$	Erie Transcap
C307	Same as C306	
C308	CAPACITOR, fixed, . $01 u \mathrm{~F},+80-20 \%$, 500 V . DC	RMC Discap, Type SM
C309	Same as C303	
C310	CAPACITOR, fixed, . $1 u F, \pm 20 \%, 250 \mathrm{~V} . \mathrm{DC}$	TCC PMX 4
C311	CAPACITOR, fixed, $1000 \mathrm{pF}, \pm 10 \%$, 500 V . DC	Erie 851
R 100	RESISTOR, fixed, 1 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$.	CMC 701-102
R306	RESISTOR, fixed, 330 K ohms, $\pm 10 \%$, $1 / 4 \mathrm{~W}$	CMC 702-334
R 307	Same as R306	
R308	Same as R306	
R 309	Same as R 306	
R313	RESISTOR, fixed, 3.9 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$.	CMC 702-392
S105/G/H	SWITCH, wafer	CMC 187-772
XF 101	FUSEHOLDER, 8AG. Type S \#387001	
F101	FUSE, 2 amp. 8AG. Type 362002	Littlefuse
Y410	CRYSTAL unit, Freq to order	CMC 730-054
POWER AMPLIFIER ASSEMBLY 188-930		
C246/1	CAPACITOR, variable, 190 to 760 pF , Mica	Arco-Elmenco 305
C246/2	Same as C246/1	
C247	CAPACITOR, fixed, 0. luF, $+80-20 \%, 25 \mathrm{~V} . \mathrm{DC}$	Erie 5815
C252	CAPACITOR, fixed, $0.05 \mathrm{uF},+80-20 \%, 25 \mathrm{~V} . \mathrm{DC}$	Erie 5855
C257	CAPACITOR, fixed, $1000 \mathrm{pF}, \pm 10 \%$, 500 V . DC	Erie 851
C258	Same as C247	
C302	CAPACITOR, fixed, $1000 \mathrm{uF}, 25 \mathrm{~V} . \mathrm{DC}$	CMC 187-788
R282	RESISTOR, fixed, 1 ohm, $\pm 10 \%, 1 / 2 \mathrm{~W}$.	Allan Bradley
R283	Same as R 282	
R286	RESISTOR, fixed, 390 ohms, $\pm 10 \%, 1 / 4 \mathrm{~W}$.	CMC 702-391
R287	RESISTOR, fixed, 470 ohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$.	CMC 941-47 b
R288	RESISTOR, fixed, 270 ohms, $\pm 10 \%$, 1 W	CMC 932-271
R289	RESISTOR, fixed, 15 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$.	CMC 701-150
R290	RESISTOR, fixed, 4.7 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$.	CMC 701-047
R291	RESISTOR, fixed, 18 ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$.	CMC 701-180
R292	RESISTOR, thermistor, 10 ohms	Siemens 151-10

FIGURE II
TOP VIEW OF PRINTED CIRCUIT BOARD

FIGURE 12
BOTTOM VIEW OF PRINTED CIRCUIT BOARD

SECTION 5 AVAILABLE OPTIONS

The CP24 is ordered by number, including the numbers of the optional equipment required.

EXAMPLE CP24/ 1/2 / 3 / 4/ 6 / 9 / 14/ 15/ 18/2 1/22/30/40
The numbers after the oblique strokes are taken from the table below. The above unit would consist of the following.

The CP24 unit (/1), with basic antenna kit (/2), loading coil (/3), 5 foot whip antenna (/4), waterproof microphone (/9), batter y charger with adaptor (/14 \& /15), nickel cadmium batterie s (/18), carrying bag (/ 21), with strap (/22), and frequency kit s (/ $30 \& / 40$).

Other options may be ordered from the table.

Numbers of the equipment are as follows:

1. Transceiver, less coils, crystals, and accessories.
2. Adjustable Antenna Kit: includes tuner, goose neck, ground wire, and long wire antenna. Must be used with /4 or /5.
3. Loading Coil: Use with tuner and whip between 1.6 MHz and 2.25 MHz .
4. Flexible 5 foot fiberglass whip antenna with storage tube which is attached to carrying bag.
5. Rigid, collapsible 5 foot whip antenna.
6. Horizontal Diploe Antenna: cut to frequency.
7. Mobile Mounting Kit.
8. Mobile Whip Antenna; with base and loading coil adjusted to frequency.
9. Waterproof Hand Microphone
10. Mobile Hand Microphone
11. Waterproof Handset.
12. C. W. Kit: including key
13. Battery Charger: $115 / 230$ V. AC. Connects to antenna socket.
14. Charger Adapter Plug: Allows antenna and charger to be connected at the same time.
15. Battery Holder.
16. Nickel Cadmium Battery: 9 size D cells.
17. Alkaline Battery: 9 size D cells.
18. Zinc - Carbon Battery: 9 size D cells.
19. Carrying bag less shoulder strap
20. Carrying Strap.
21. Rigid Collapsible 3 foot whip antenna.
22. Rigid Collapsible8 foot whip antenna

Transmitter Coil Kits
Specify appropriate channel options and frequency kits, and whether USB or LSB. All frequencies should be that of suppressed carrier.
30. $1.6-2.25 \mathrm{MHz}$
31. 2. 25-3. 1 MHz
32. 3. 1-4.3 MHz
33. 4. $3-6.0 \mathrm{MHz}$
34. 6. $0-8.3 \mathrm{MHz}$
35. $8.3-11.4 \mathrm{MHz}$

36 11.4-15.0 MHz

Channel options (a) and (b) (see Section 1, para. B) require one kit per channel, unless second channel is less than 1% removed, in which case only one kit is required.
Options (c) \& (d) require no kits, but extra crystals are necessary.

Receiver Coil Kits

40. $1.6-2.25 \mathrm{MHz}$
41. 2. 25-3.1 MHz
1. 3. 1-4.3 MHz
1. 4. $3-6.0 \mathrm{MHz}$
1. 6.0 - 8.3 MHz
2. $8.3-11.4 \mathrm{MHz}$

46 11.4-15.0 MHz

Channel options (a) and (b) (see Section 1, para. B) require one kit per channel, unless second channel is less than 1% removed in which case only one kit is required. Options (c) \& (d) require no kits, but extra crystals are necessary.

Service Centers

CALGARY, ALTA. 929 42nd Ave. S. E.

EAST KINGSTON, ONT. 110A Clergy Street

EDMONTON, ALTA. 10524-106th Street

FORTUNE, NFLD. P.O. Box 70

HALIFAX, N.S.
3480 Prescott Street

HAMILTON, ONT.
395 Wentworth St. N.
MONTREAL, QUE.
74 Trenton Ave.

NANAIMO, B.C.
Nanaimo Terminal Bldg.
Nanaimo Terminal
OTTAWA, ONT.
880 Wellington Street, Bays 102, 104

PORT ARTHUR, ONT. 191 Wolesley Street

PORT MC NEILL, B. C.
Vancouver Island

PRINCE RUPERT, B. C. P. O. Box 456

QUEBEC CITY, QUE. 450 Papin Avenuè

SAINT JOHN, N.B. 100 Station Street

SHELBURNE, N.S. P.O. Box 661

SOURIS, P.E.I. P.O. Box 266

STRAIT OF CANSO DEPOT
Half Island Cove Guysborough, N.S.

TORONTO, ONT. 103 Railside Road Don Mills

VANCOUVER, B. C. 3636 East 4th Avenue

WELLAND CANAL
1 Beaverdams Road Thorold

YARMOUTH, N.S. 100 Water Street

SAINT JOHN'S, NFLD. 20 Barnes Road

IN U.S. A.
KAAR ELECTRONICS CORPORATION Member: CANADIAN MARCONI COMPANY Group

